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This article introduces an innovative non-invasive method for health status monitoring of industrial LED lighting systems, 
addressing the need for reliable and efficient maintenance solutions. A combined approach utilizing a U-Net Convolutional 
Neural Network and a Luminance Flux Computing Model (LFCM) to identify faults in individual LEDs based on computed 
luminance flux values is proposed. The preprocessing unit designed in this article achieves a Peak Signal-to-Noise Ratio 
(PSNR) of 40.96 and precise segmentation of LED components using U-Net, achieving an accuracy of 95% and an 
Intersection over Union (IoU) of 90%. The proposed system effectively estimates the depreciation rate of each LED in a 
LED panel, providing critical insights into their health and operational efficiency. Performance evaluations reveal the 
effectiveness of the system and the results are compared with other deep learning techniques such as Fully Convolutional 
Networks (FCN), Mask R-CNN, SegNet, DeepLabv3+ and PSPNet, highlighting its potential for enhancing the longevity and 
reliability of industrial LED systems. 
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1. Introduction 
 

In recent years, Light-Emitting Diode (LED) 

technology has reached significant growth in demand and 

applications across multiple industries. From residential 

and commercial lighting to automotive and signage, LEDs 

have become ubiquitous due to their energy efficiency, 

durability and versatility. This widespread adoption 

underscores the critical role of LEDs in modern industrial 

settings, where efficient and reliable lighting solutions are 

essential for productivity, safety and cost-effectiveness. 

Industries rely on LED panels for plenty of purposes, 

ranging from general illumination to specialized 

applications such as display screens, signage and 

architectural lighting. The advantages offered by LED 

panels, including flexibility in design, low power 

consumption and long lifespan, make them an ideal choice 

for diverse industrial settings. Moreover, the ability to 

control brightness, colour and intensity adds another 

dimension of utility, enabling customized lighting 

solutions tailored to specific requirements. Despite the 

numerous benefits of LED technology, the reliable 

operation of LED panels is not immune to challenges. One 

of the significant challenges faced by industries is the 

detection of defective LEDs within a panel. Unlike 

traditional incandescent or fluorescent lights, where a 

failed bulb is easily noticeable, identifying a 

malfunctioning LED in a panel poses unique difficulties 

[1-5]. The inherent nature of LED panels, comprising 

numerous individual diodes arranged in a grid pattern, 

complicates the process of pinpointing a defective LED. 

Moreover, the compact size of LEDs and their integration 

into complex circuitry make visual inspection alone 

insufficient for accurate diagnosis [6-8]. Traditional 

methods for detecting faults in LED lamps often rely on 

electrical parameter measurements and visual inspections 

[9]. However, these techniques can be limited in detecting 

certain types of faults or may not provide comprehensive 

insights into the performance degradation of the lamps. 

Existing research highlights the need for more advanced 

diagnostic techniques that go beyond simple electrical 

testing and visual observation [10-14]. Time-frequency 

analysis has been increasingly used in various fields for 

fault detection and diagnosis due to its ability to capture 

dynamic changes over time. In the context of LED lamps, 

analyzing the light output signals using time-frequency 

methods, such as Variational Mode Decomposition 

(VMD), can reveal underlying patterns or anomalies that 

are not visible through traditional methods. Previous 

studies have shown that time-frequency characteristics can 

effectively highlight fault signatures and improve 

diagnostic accuracy. Support Vector Machines (SVM) 

have been widely employed in fault diagnosis and 

classification tasks due to their robustness and accuracy. 

Recent advancements in diagnostic strategies, particularly 

those combining time-frequency analysis with machine 

learning techniques, have demonstrated significant 

improvements in fault detection accuracy [15-18].  

But all these methods are invasive, requiring direct 

access to the LED panel and potentially disrupting 

ongoing operations [19]. This limitation highlights the 

need for non-invasive diagnostic techniques capable of 
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accurately identifying LED faults without disrupting 

normal functioning. Also, identifying defect in a single 

LED present in the LED panel is tedious.  

In response to these challenges, researchers and 

industry professionals have increasingly turned to infrared 

(IR) thermal imaging as a promising solution for LED 

panel fault diagnosis. Thermal imaging is based on the 

infrared radiation detection to assess temperature 

variations in objects [20]. Since faulty LEDs often exhibit 

abnormal heat signatures due to increased resistance or 

localized overheating, thermal imaging offers a non-

destructive and non-contact method for identifying faulty 

components within an LED panel. Integrating this 

technology into LED fault detection offers several 

advantages. Thermal imaging enables rapid and 

comprehensive inspection of LED panels, allowing 

operators to identify faulty LEDs with minimal disruption 

to operations. Also, thermal imaging provides quantitative 

data on temperature distribution across the panel, 

facilitating objective analysis and decision-making 

regarding maintenance or replacement actions. Moreover, 

thermal imaging offers the capability to detect latent or 

intermittent faults that may not be apparent through visual 

inspection or electrical testing alone. By capturing real-

time thermal images of LED panels during its operation, 

thermal imaging systems can identify subtle temperature 

variations indicative of impending failure or abnormal 

operation. Additionally, the non-invasive nature of thermal 

imaging reduces the risk of damage to LED panels during 

diagnostic procedures, preserving the integrity of the 

lighting system and minimizing downtime. This aspect is 

particularly advantageous in critical industrial 

environments where uninterrupted operation is paramount.  

The increasing demand for reliable and efficient 

lighting solutions in industrial settings underscores the 

importance of effective LED panel fault diagnosis. While 

traditional methods face limitations in accurately 

identifying LED faults, thermal imaging emerges as a 

promising solution offering non-invasive, real-time and 

comprehensive fault detection capabilities. By utilizing 

infrared imaging, industries can improve the reliability, 

safety and performance of LED lighting systems, leading 

to increased productivity and cost reductions. While prior 

studies have explored thermal imaging for LED 

diagnostics, this research uniquely integrates a U-Net 

Convolutional Neural Network for precise LED 

segmentation and a Luminance Flux Computing Model 

(LFCM) for accurate luminous flux estimation. Unlike 

traditional fault detection approaches that rely on indirect 

electrical measurements, this method provides a 

comprehensive, non-invasive solution capable of real-time 

fault identification at the individual LED level. 

Additionally, the proposed preprocessing filter enhances 

the quality of thermal images by effectively reducing noise 

while preserving critical details, improving segmentation 

accuracy. The main highlights of this research includes 

• Develop a system capable of accurately detecting 

faults in individual LEDs within a panel. 

• Develop an effective preprocessing filter that excels in 

preprocessing LED thermal images by effectively 

reducing noise while preserving important features. 

• Implement a U-Net Convolutional Neural Network to 

provide precise segmentation of thermal images, 

crucial for isolating and analyzing individual LED 

components. 

• Design a Luminance Flux Computing Model (LFCM) 

that accurately determines the luminance flux values 

of individual LEDs within a panel, which are critical 

for assessing LED performance and health. 

• To estimate the depreciation rate of each LED in a 

LED panel. 

 
 
2. Proposed system 
 

LEDs consume much less energy than traditional 

incandescent or fluorescent bulbs. They convert a greater 

portion of electrical energy into light rather than heat. LED 

lights are relatively low-maintenance compared to 

traditional lighting options. The industrial LED lighting 

systems may be affected due to driver failure, poor heat 

management and incompatible dimmer. LEDs can 

experience degradation in brightness and colour over their 

lifespan. However, addressing the issues proactively can 

ensure continued performance and longevity. This article 

is introducing a thermal image based non-invasive 

technique for finding the luminance flux and depreciation 

rate of the industrial LED lighting systems. The schematic 

representation of the proposed system is illustrated in           

Fig. 1. 

 

 

 
 

Fig. 1. Schematic representation of the proposed system 

 (colour online) 

 
 

A. Acquisition of thermal images 

 

The thermal imaging camera detects infrared radiation 

emitted by LED and converts it into a thermal image, 

which visually represents the temperature distribution. The 

thermal image is essentially a matrix where each pixel 

represents a temperature value corresponding to that 

particular point. To extract these temperature values, the 
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image is analysed using the FLIR tool software. This 

software interprets the infrared data and produces a 

temperature matrix, which quantifies the temperature at 

each pixel location. The matrix provides a comprehensive 

view of the temperature distribution across the entire field 

of view. 

 

 

B. Preprocessing techniques 

 

Thermal images have less resolution and also, the 

texture and edge information will not clearly be obtained 

in a raw thermal image. Certainly, preprocessing 

techniques are necessary to extract useful information 

from the image. The primary goal of these techniques is to 

improve contrast, minimize noise and preserve edge 

details. The various preprocessing techniques available are 

given below: 

 

 

(i) Gaussian filter 

 

The Gaussian filter operates by applying a Gaussian 

function based convolution kernel. This kernel assigns 

higher weights to central pixels while gradually decreasing 

the influence of surrounding pixels, resulting in smooth 

image filtering. The gaussian function is defined as. 

 

 (   )  
 

     
      

                     (1) 

 

where (x,y) are the coordinates of the pixel. σ is the 

standard deviation, controlling the extent of smoothing. 

The gaussian filter generates a kernel based on σ.  The size 

of the kernel is typically odd to maintain a center pixel. 

 

 

(ii) Median Filter 

 

Median filtering is an effective technique for noise 

reduction in images while preserving edges. Unlike low-

pass FIR filters, it maintains edge sharpness, making it 

particularly useful in image processing for removing ‘salt-

and-pepper’ noise. This method replaces each pixel value 

with the median of its neighboring pixels, ensuring 

efficient noise suppression without distorting important 

details.  

 

(iii) Bilateral filtering 

 

Bilateral filtering is a powerful technique used for 

image smoothing while preserving edges. It combines 

domain and range filtering to achieve this effect, making it 

particularly useful in various applications like image 

denoising and smoothing. Bilateral filtering operates 

through a two-step process: 

(a) Spatial Component: This is a Gaussian function 

that considers the distance between pixels in the spatial 

domain. Pixels closer to the center pixel contribute more to 

the average. 

(b) Range Component: This considers the intensity 

differences between the center pixel and neighboring 

pixels, using another Gaussian function. Pixels with 

similar intensity to the center pixel contribute more 

significantly. 

Mathematically, the output pixel value I'(x) is 

computed as: 
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where, W(x) is the normalization factor.  

   
 - spatial Gaussian kernel 

   
  - the range Gaussian kernel 

Ω- is the neighborhood of the pixel   

As the range parameter σr increases, the bilateral filter 

begins to approximate Gaussian convolution due to the 

broadening and flattening of the range Gaussian, leading 

to a nearly uniform effect across intensity levels. 

Meanwhile, increasing the spatial parameter σd leads to the 

smoothing of larger features. 

 

 

(iv) Non – local diffusion filter 

 

Non-local diffusion filtering reduces noise by 

averaging pixel values based on their similarity over large 

regions of the image rather than just local neighborhoods. 

This allows for effective smoothing while retaining 

significant details. The output pixel value I'(x) is computed 

as 

 

  ( )   ∑  (   )  ( )                 (3) 

 
where ω(x,y)is the weight based on similarity. I(y)is the 

intensity of the neighboring pixel y and Ω represents a 

search area across the entire image. 

 

 

C. LED segmentation technique 

 

In this article, the U-Net Conventional Neural network 

is used to segment LED thermal images. The U-Net 

architecture is commonly used for the biomedical image 

segmentation [19] and recently showed better results for 

the thermal image segmentation [21]. The U-Net 

architecture consists of two distinct paths such as 

contracting path and an expanding path. The contracting 

path, also known as the encoder, consists of layers that 

extract contextual information while progressively 

reducing the spatial resolution of the input. Conversely, 

the expanding path, or decoder, reconstructs the original 

spatial resolution by decoding the compressed data and 

incorporating skip connections from the encoder. Through 

convolutional operations, the contracting path identifies 

crucial features within the thermal image, reducing spatial 

dimensions while increasing feature depth to capture more 

abstract representations. Meanwhile, the expanding path 

focuses on reconstructing the image by upsampling feature 
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maps and applying convolutional operations. The skip 

connections between the two paths help preserve spatial 

details that might otherwise be lost, ensuring precise 

feature localization during segmentation. 
 

 
 

Fig. 2. U-Net architecture for LED segmentation (colour online) 

 

 

Fig. 2 illustrates the process of segmenting the LED 

region using U-Net architecture in this work. The 

grayscale image of size 572×572×1 is given as the input 

for this network and the final binary segmented output 

image is extracted with the size of 388×388×2. During 

encoding, the input image undergoes progressive 

dimensional reduction, increasing the number of feature 

channels. This enables the network to extract high-level 

patterns as it moves deeper. At the bottleneck stage, the 

feature map is transformed into a 30×30×1024 

representation. The decoder then reconstructs the original 

image size by applying up-sampling layers that restore 

spatial resolution while reducing the number of channels. 

Skip connections from the encoder further refine feature 

localization, ensuring precise segmentation. The final 

output is a binary segmentation map, where each pixel is 

classified as either foreground or background. 

 

 

D. Luminance Flux Computing Model 

 

Luminous flux measures the total amount of visible 

light emitted by a source in all directions. It quantifies the 

overall light output without considering the direction or 

concentration of the light (Lumens - lm) and it is used to 

describe the total light output of a bulb, LED or other light 

sources, making it useful in evaluating the efficiency of 

lighting products. Calculating luminous flux from a 

thermal image is a complex task because thermal images 

measure infrared radiation (heat) rather than visible light. 

However, under certain conditions, it may be possible to 

estimate luminous flux indirectly, where the heat and light 

output are related. The novelty in this proposed work is 

measuring the luminance flux of the LED lights. 

Meanwhile the traditional methods follow luminance flux 

measurement with the help of Luminance meter and 

meanwhile the Luminance will give cumulative luminance 

flux of the entire LED panel not for the individual LED. 

The algorithm for the Luminance Flux Computing Model 

(LFCM) is given below and its individual steps are 

elaborated in this section.   

 

 

Step 1: Extraction of Temperature Data: 

 

Convert the thermal image into a temperature matrix 

T(x,y) where each pixel corresponds to the temperature at 

that point on the LED array. The LED regions are 

segmented with the help of U-Net architecture in the 

previous step. Hence the temperature data are extracted 

only for the segmented LED region.  

 

 

Step 2: Calculate Average Temperature 

 

The average operating temperature Tavg is computed 

from the LED temperature matrix 

 

       
 

 
∑  (   )                               (4) 
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where N is the number of pixels in the LED region and 

(x,y) represents the pixel coordinates. 

 

 

Step 3: Estimate Power Dissipated as Heat 

 

The heat power is estimated with the help of the 

equation given below. Where the thermal resistance Rth of 

the LEDs are available in the LED datasheet. The light 

power is calculated by subtracting the heat power from the 

electrical power such as         

 

      
             

   
                         (5) 
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Step 4: Adjust Luminous Efficacy  

 

Luminous efficacy is a temperature dependent 

parameter and it is provided by the manufacturer. 
Luminous efficacy quantifies the efficiency of a light 

source in converting electrical power into visible light. In 

LED lighting, this efficacy is regulated using a 

temperature correction factor to account for variations in 

operating temperature, ensuring optimal performance and 

efficiency. 
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where       is the luminous efficacy at the reference 

temperature and TCF is temperature correction factor. 

 

Step 5: Calculate Luminous Flux 
 

Luminous flux (  ) can be calculated with the help of 

following equation where the proposed work is calculating 

the luminous flux of individual LED segment.   

 

                   (    )                   (9) 

 

 

Step 6: Calculate Depreciation rate 
 

The Depreciation Rate of an LED refers to the 

reduction in its luminous flux over time. It is often 

expressed as a percentage and represents how much the 

LED’s light output has decreased compared to its initial 

value (or expected value). 

 

                   (  
                        

                      
)     (10) 

 

The pseudo code for LFCM is given below, 

function LFCM (thermal_image, led_specs, power_input, 

ambint_temp) 

returns               

 # Step 1: Pre-process the thermal image 

temperature_matrix thermal_image   

# Export using Flir_Tool 

led_region = Unet_segmentation(             ) 

Temp_over_led_region temperature_matrix led_region  

# Step 2: Calculate average temperature 

T_avg = mean(Temp_over_led_region) 

# Step 3: Estimate power dissipated as heat 

R_th = led_specs.thermal_resistance 

P_heat = (T_avg - ambient_temp) / R_th 

P_light = power_input - P_heat 

# Step 4: Adjust luminous efficacy based on temperature 

eta_ref = led_specs.luminous_efficacy_ref 

[pixel_temperature,index]= Temp_over_led_region(:) 

functiontemp_correction_function

(                                      ) 
returnstemp_correction_factor 

                      =1+(-1/eta_ref)* 

(                              ) 

eta = eta_ref * temp_correction_factor 

# Step 5: Calculate luminous flux 

              = P_light * eta 

 # Step 6: Calculate Depreciation rate 

                  ( )  (  
                        

                      
)      % 

 

 
3. Results and discussion 
 

The experimental setup for capturing thermal images 

of LED panel is shown in Fig. 3. The specification of the 

LED panel is tabulated in Table 1. Also, the thermal 

images of LED panel array are placed in a closed chamber 

setup and for various operating voltages such as 25%, 

50%, 75% and 100% of rated voltage.  

 

 

 
 

Fig. 3. LED panel in closed chamber setup  

 

 

The dataset used in this work consists of 3426 thermal 

images captured from LED panels operating under diverse 

conditions, including variations in power levels, ambient 

temperatures, various operating hours (namely 1 hour, 6 

hours, 12 hours, 24 hours) and LED aging stages to ensure 

robustness and generalizability. To evaluate the model’s 

performance across different LED systems, the proposed 

U-Net segmentation and Luminance Flux Computing 
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Model (LFCM) were tested on both newly manufactured 

and aged LED panels. The thermal images are captured 

using flir thermal C3 Uncooled Microbolometer 640 × 480 

pixel with fixed focus camera having spectral range of 7.5 

- 14.0 μm and operating temperature of 0 ˚C-150 ˚C. In the 

closed chamber setup, the LED panel is fully covered with 

the black body setup and the images are captured with the 

help of the thermal camera and the captured thermal image 

is showcased in Fig. 4. The captured thermal images are 

having poor intensity profile, in order to improve its 

contrast and to enhance edge information, the 

preprocessing techniques are implemented in this proposed 

system. The preprocessing is done with the help of four 

different methods such as gaussian filter, median filter 

image, bilateral filter and non-local diffusion filter. Fig. 5 

showcases the results obtained from the various 

preprocessing techniques. 

 

 

 

 

 

 

 

Table 1. Specifications of the LED panel 

 

S. No Specifications Ratings 

1 Rated voltage 45 V 

2 Rated current 650 mA 

3 Rated power 30 W 

4 Luminous Efficacy 178 lm/W 

5 Luminous flux 5345 Lumen 

6 Thermal resistance 0.7 ˚C /W 

7 Peak Temperature 50 ˚C 

8 Number of LEDs 186 

 

 

 
 

Fig. 4. Captured LED thermal image (colour online) 

     
(a)                                                                          (b) 

     
(c)                                                                             (d) 

 
(e) 

 

Fig. 5. Preprocessing of thermal images (a) Original thermal image (b) Gaussian filtered image (c) Median filtered image  

(d) Bilateral filtered image (e) Non-local diffusion filtered image 
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The performance of different preprocessing 

techniques is tabulated in Table 2. By evaluating the 

performance of different pre-processing techniques for 

LED thermal images, several metrics are used to evaluate 

their effectiveness. The techniques compared include the 

bilateral filter, non-local diffusion filter, median filter and 

Gaussian filter. The bilateral filter emerged as the superior 

method overall. It achieves the highest Signal-to-Noise 

Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR), 

which indicates excellent noise reduction while preserving 

image quality. Its Structural Similarity Index (SSIM) is 

perfect at 1.00, reflecting its capability to maintain the 

structural integrity of the images. Additionally, the 

bilateral filter scores highest in Feature Similarity Index 

(FSIM), underscoring its effectiveness in preserving 

detailed features. The low Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE) and Mean Absolute 

Error (MAE) further validate its strong performance. The 

non-local diffusion filter also performed well, particularly 

excelling in PSNR and Edge Preservation Index (EPI). It 

provides strong noise reduction and edge preservation 

capabilities, with very low MSE and MAE values. 

However, FSIM is slightly lower than that of the bilateral 

filter, indicating marginally less effectiveness in 

preserving image details. Whereas, the median filter shows 

less favorable results. It has lower values in SNR, PSNR 

and SSIM compared to the bilateral and non-local 

diffusion filters, suggesting that it is less effective at 

reducing noise and preserving image quality. Its higher 

MSE, RMSE and MAE values further illustrate its 

limitations in preprocessing LED thermal images. 
 

 

Table 2. Performance comparison of various preprocessing 

techniques 
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13.25 5.24 3.38 40.94 1.00 -0.02 0.93 0.59 1.00 1.19 

N
o

n
- 
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l 
 

11.21 2.76 4.29 43.73 0.99 0.00 0.89 0.63 1.00 1.04 

 

 

The gaussian filter performed the least effectively 

across nearly all metrics. It recorded the highest MSE and 

RMSE, indicating poor noise reduction and image 

preservation. The lower SNR and PSNR values highlight 

its limitations in maintaining image quality compared to 

other filters. Overall, the bilateral and non-local diffusion 

filters are the most effective for preprocessing LED 

thermal images, with the bilateral filter being the preferred 

choice due to its superior performance across all key 

metrics. The preprocessed image is converted into gray 

scale image and it is given as an input for the U-Net 

architecture. The size of training, validation and testing 

matrix, is a split of total 3426 images and are taken in the 

order 70:15:15 during training, validation and testing 

phase respectively. Fig. 6 shows the segmentation result 

obtained from the U-Net architecture. The result is in the 

form of binary where the white pixels represent the LED 

region and black pixels represent the non-LED region.  

 

 

 
 

Fig. 6. U-Net Segmented LED image 

 

 

Table 3. Performance comparison of various segmentation 

techniques 

 

Method 
Accuracy 

(%) 

IoU 

(%) 

Dice 

Coefficient 

Processing 

Time (ms) 
Parameter 

U-Net 95 90 0.88 120 31.03M 

FCN 92 85 0.81 150 134.7M 

Mask R-

CNN 
94 89 0.85 200 44.7M 

SegNet 90 80 0.78 130 29.5M 

DeepLab 

v3+ 
93 87 0.83 110 40M 

PSPNet 92 86 0.82 170 50M 

 

 

Accuracy measures the percentage of correctly 

predicted pixels in the image. From the Table 3 it is 

evident that the U-Net delivers the highest accuracy at 

95%, making it more efficient than other segmentation 

techniques. Further analysis of fault detection accuracy 

showed 96% precision for early-stage degradation, 94% 

for partial malfunctions and 91% for full LED failures. 

These results confirm the system’s reliability in real-world 

scenarios and its ability to generalize across various LED 

fault conditions. The dice coefficient metric is used for 

evaluating the segmentation performance and it measures 

the similarity between predicted and actual regions. U-Net 

has the highest dice coefficient of 0.88, indicating highly 

accurate segmentation predictions. IoU measures the 
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overlap between the predicted and ground truth 

segmentation and higher IoU reflects better segmentation. 

U-Net achieves the best IoU at 90%, indicating a high 

overlap between predicted and actual regions. Processing 

time is very important parameter for real-time 

applications. DeepLabv3+ offers the fastest processing 

time at 110 ms, making it the most efficient in terms of 

speed. U-Net follows closely at 120 ms, also offering fast 

processing. The number of parameters is an indicator of 

the model’s complexity and potential resource usage. FCN 

has the highest number of parameters at 134.7M, making it 

a very resource-intensive model. U-Net and SegNet are the 

most efficient in terms of parameter count, with 31.03M 

and 29.5M parameters, respectively. The proposed U-Net 

segmentation stands out as the top performer with the best 

accuracy, IoU and Dice coefficient, while maintaining a 

reasonable processing time and parameter count. The 

temperature values of each LED pixel value are extracted 

from the temperature matrix computed by the FLIR 

software. The extracted temperature is given as the input 

for the LFCM and the parameters calculated in the LFCM 

is shown in Table 4. To showcase the test results, the 

luminous flux values and depreciation rate of 10 LEDs in a 

panel is shown in Table 5. 
 

 

Table 4. Computed thermal parameters using LFCM 

 

Parameters Values 

Average temperature        

Electrical Power (Pin) 30W 

Heat Power (Pheat) 18.97W 

Light Power (Plight) 11.02W 

Luminous Efficacy (    ) 173 Lm/W 

 

 

Table 5. Sample computed Luminous flux (Lumen) values  

of individual LEDs 

 

LED 

index 

Luminous Flux in 

Lumen 

Depreciation Rate 

(%) 

1 12.72709 55.71123 

2 10.37252 63.90483 

3 27.72575 3.517623 

4 10.84966 62.24446 

5 11.46164 60.11484 

6 10.06135 64.98769 

7 26.43956 7.993423 

8 8.92037 68.95816 

9 27.17601 5.430667 

10 9.760544 66.03445 

 
 
 

The proposed system is capable of computing the 

depreciation rate of each LEDs present in the panel based 

on the current luminous flux of the LED segments as 

shown in Fig. 7. Since operating voltage is considered 

during the luminous calculation, the computed 

depreciation rates are accurate. Higher the depreciation 

rate, the condition of LED is bad and needs consideration. 

Lower the value indicates the better performance of LED. 

In Fig. 7(a), the green colour circle represents LED 

operating under normal operating conditions with 

minimum depreciation rate.  Whereas in the Fig. 7(b), red 

colour circles represents the deprecated LED, it shows the 

reduced luminous value. Fig. 7(c) shows some LEDs are 

faulty and it is denoted by gray colour, which means no 

light output from the corresponding LEDs. The proposed 

LFCM algorithm is validated on different aged single 

LEDs and the actual luminous flux of the test LED is 

measured with the help of lux meter and the LFCM. For 

this validation, different aged single LEDs i.e., 60 days 

(1,440 operating hours), 120 days (2,880 operating hours) 

and 300 days (4,320 operating hours) are tested. Table 6 

represents the luminous flux values calculated with the 

help of LFCM and conventional method using lux meter. 

The comparison of the results reveals that the LFCM 

algorithm performs remarkably well, with minimal 

deviation from the lux meter measurements. The Mean 

Squared Error (MSE) between the two methods is as low 

as 0.1 which demonstrates that the LFCM algorithm is 

nearly identical to the conventional method in calculating 

luminous flux.  

 

 
Table 6. Performance evaluation of LFCM 

 

Age of 

the 

LED 

Index 

of the 

LED 

Luminous 

Flux 

(LFCM 

Algorithm) 

Luminous 

Flux 

(Lux 

Meter) 

Error 

(Flux 

Difference) 

60 

days  

LED1 95.4 lm 96.0 lm 0.6 lm 

LED2 94.2 lm 94.5 lm 0.3 lm 

LED3 96.8 lm 97.0 lm 0.2 lm 

120 

days  

LED1 92.5 lm 92.1 lm 0.4lm 

LED2 91.9 lm 91.8 lm 0.1 lm 

LED3 93.5 lm 93.9 lm 0.4 lm 

180 

days 

LED1 89.5 lm 89.7 lm 0.2 lm 

LED2 89.0 lm 88.5 lm 0.5 lm 

LED3 90.9 lm 90.8 lm 0.1 lm 
 

 

 

The performance of the proposed system is evaluated 

by comparing with other methods addressed in the 

literature and it is tabulated in Table 7. The proposed 

method utilizes a U-Net and Luminance Flux Computing 

Model, which allows for non-invasive analysis and the 

ability to assess the luminous output of individual LEDs. 

Unlike the other methods, which are primarily invasive 

and focus on online or offline diagnosis, this approach 

supports both online and offline assessments, enhancing its 

versatility. Additionally, it uniquely computes the 

depreciation rate, providing valuable insights into the 

lifespan and performance of the LEDs, which is not 

addressed by the other methods. 
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Fig. 7. Health status of LED (a) Normal condition (b) Panels with depreciating LEDs (c) Panel with faulty LED 

 (colour online) 

 

 

Table 7. Performance comparison of proposed system with other methodologies available in the literature 

 

Parameters 
Proposed 

Method 
[11] [12] [13] 

Method used U-Net,  

LFCM 
SVM 

Life prediction 

model 
PWM control 

Computational 

parameter 
IR thermal image Electrical  Temperature Electrical  

Invasive /  

Non-Invasive 
Non-Invasive Invasive Invasive Invasive 

Data fusion  Not required NA Required NA 

Online/ Offline  Both Online Online Offline 

Capability  

of computing 

individual  

LED luminous 

Yes No No No 

Depreciation  

rate calculated 
Yes No No No 

 
 
4. Conclusions 
 

The proposed LED health monitoring system offers a 

robust and non-invasive solution for monitoring and 

assessing the health of industrial LED lighting systems. 

The results indicate that the U-Net model achieved an 

accuracy of 95% and a Dice coefficient of 0.88, 

significantly outperforming other segmentation algorithms 

such as FCN and Mask R-CNN, which achieved 

accuracies of 92% and 94% respectively. The Luminance 

Flux Computing Model provides accurate depreciation rate 

estimations, with observed values indicating that higher 

depreciation rates correlate with a 30% reduction in 

luminous output. From an industrial perspective, this work 

contributes to minimizing downtime and operational costs 

by facilitating real-time LED health assessments. The non-

invasive nature of thermal imaging ensures that LED 

panels can be monitored without physical intervention, 

reducing the risk of damage during diagnostics. 

Furthermore, the ability to estimate individual LED 

depreciation rates allows industries to plan maintenance 

schedules more efficiently, extending the overall lifespan 

of LED systems. Beyond immediate applications, this 

research lays the foundation for further advancements in 

LED technology, particularly in the development of 

intelligent lighting systems equipped with automated fault 

detection. Future integration with IoT-based monitoring 

platforms could enable large-scale deployment in smart 

factories and infrastructure, improving energy efficiency 

and sustainability.  
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